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8.5 Computing Eigenvalues

In practice, the problem of finding eigenvalues of a matrix is virtually never solved by finding the
roots of the characteristic polynomial. This is difficult for large matrices and iterative methods are
much better. Two such methods are described briefly in this section.

The Power Method

In Chapter 3 our initial rationale for diagonalizing matrices was to be able to compute the powers
of a square matrix, and the eigenvalues were needed to do this. In this section, we are interested in
efficiently computing eigenvalues, and it may come as no surprise that the first method we discuss
uses the powers of a matrix.

Recall that an eigenvalue A of an n X n matrix A is called a dominant eigenvalue if A has
multiplicity 1, and
|A| > |u| for all eigenvalues u # A
Any corresponding eigenvector is called a dominant eigenvector of A. When such an eigenvalue

exists, one technique for finding it is as follows: Let x¢ in R" be a first approximation to a dominant
eigenvector A, and compute successive approximations X, X», ... as follows:

X =AX) Xy =AX] xX3=Ax)p
In general, we define
Xptr1 =Axy;  for each k>0

If the first estimate xq is good enough, these vectors x,, will approximate the dominant eigenvector
A (see below). This technique is called the power method (because x; = Afx( for each k > 1).
Observe that if z is any eigenvector corresponding to A, then

z-(Az) _ z-(Az) _ 1
]| 1|2
Because the vectors x;, X3, ..., X,, ... approximate dominant eigenvectors, this suggests that we

define the Rayleigh quotients as follows:

= XXl for k> 1
AR =

Then the numbers r; approximate the dominant eigenvalue A.

Example 8.5.1

Use the power method to approximate a dominant eigenvector and eigenvalue of
A 11
12 0

Solution. The eigenvalues of A are 2 and —1, with eigenvectors [ } } and [ ! } Take

—2
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1 . . .
X0 = { 0 } as the first approximation and compute x1, X3, ..., successively, from

X] = AXg, Xp = AXq, ... . The result is

1 13 15 |1 121
X1 - 2 s X2 - 2 B X3 - 6 B X4 - 10 9 X3 - 22 )
These vectors are approaching scalar multiples of the dominant eigenvector [ i } )

Moreover, the Rayleigh quotients are

7 115
n=s.1mn2=13 "R="%5%1>"4=2%7, -

and these are approaching the dominant eigenvalue 2.

To see why the power method works, let A1, A5, ..., A, be eigenvalues of A with A; dominant and
let yi, ¥2, ..., ¥, be corresponding eigenvectors. What is required is that the first approximation
Xo be a linear combination of these eigenvectors:

X0 =a1y|+axy,+---+any, witha; #0
If k > 1, the fact that x; = A¥xg and Ary, = 7Ll~ky,~ for each i gives
X = all{‘yl —I—azlfyz + - +aml,’f1ym for k>1

Hence
1 A k A k
—l{cxk—alyﬁ—az(—/h) Yz—i—-'-—i—am(—/ll) Y

The right side approaches ajy; as k increases because A; is dominant ( %‘ < 1 for each i > 1).
Because a; # 0, this means that x; approximates the dominant eigenvector alll"yl.

The power method requires that the first approximation xg be a linear combination of eigenvec-
tors. (In Example 8.5.1 the eigenvectors form a basis of R?.) But even in this case the method fails

if a; =0, where a; is the coefficient of the dominant eigenvector (try xo = { _é } in Example 8.5.1).

In general, the rate of convergence is quite slow if any of the ratios H—:‘ is near 1. Also, because the

method requires repeated multiplications by A, it is not recommended unless these multiplications
are easy to carry out (for example, if most of the entries of A are zero).
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QR-Algorithm

A much better method for approximating the eigenvalues of an invertible matrix A depends on the
factorization (using the Gram-Schmidt algorithm) of A in the form

A=0R
where Q is orthogonal and R is invertible and upper triangular (see Theorem 8.4.2). The QR-
algorithm uses this repeatedly to create a sequence of matrices A| = A, A,, Az, ..., as follows:
1. Define A; = A and factor it as A| = Q|R;.
2. Define A» = R1Q; and factor it as Ay = O»R».

3. Define A3 = R,Q» and factor it as A3 = Q3R3.

In general, Ay is factored as Ay = QxRy and we define Apy) = R Qk. Then Ay is similar to Ag [in
fact, Api 1 = RO = (Q,:lAk)Qk], and hence each Ay has the same eigenvalues as A. If the eigenvalues
of A are real and have distinct absolute values, the remarkable thing is that the sequence of matrices
Ay, As, Az, ... converges to an upper triangular matrix with these eigenvalues on the main diagonal.

[See below for the case of complex eigenvalues.]

Example 8.5.2

IfA= { ; (1) } as in Example 8.5.1, use the QR-algorithm to approximate the eigenvalues.

Solution. The matrices A, Ay, and A3 are as follows:

I 1 1 2 51
A1=|:2 O}ZQIRI whertezﬁ{z _1:| andR1=\%|:O 2}

o177 9]_[ 14 -18
27504 2|7 | —08 —04

7 4 13 11
WhereQQ:\/LKS{4 _7] andRzzx/%{ 0 10}

27 =5 2.08 —0.38
Ut b ke

} =Ry

8 —14 0.62 —1.08

This is converging to [ 3 _T } and so is approximating the eigenvalues 2 and —1 on the

main diagonal.

It is beyond the scope of this book to pursue a detailed discussion of these methods. The reader is
referred to J. M. Wilkinson, The Algebraic Figenvalue Problem (Oxford, England: Oxford University
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Press, 1965) or G. W. Stewart, Introduction to Matriz Computations (New York: Academic Press,
1973). We conclude with some remarks on the QR-algorithm.

Shifting. Convergence is accelerated if, at stage k of the algorithm, a number s; is chosen and
Ay — sil is factored in the form QyRy rather than A itself. Then

0, 'ArOx = O, ' (OkRi + 511) O = Ry O + sl

so we take Api = ROy + sil. If the shifts s; are carefully chosen, convergence can be greatly
improved.

Preliminary Preparation. A matrix such as

SO O ¥ *
O % ¥ X X
¥ X X X X
* K K X X

S O ¥ % ¥

is said to be in upper Hessenberg form, and the QR-factorizations of such matrices are greatly
simplified. Given an n x n matrix A, a series of orthogonal matrices H, H,, ..., H,, (called House-
holder matrices) can be easily constructed such that

B:HnC"'HlTAHl"'Hm

is in upper Hessenberg form. Then the QR~algorithm can be efficiently applied to B and, because
B is similar to A, it produces the eigenvalues of A.

Complex Eigenvalues. If some of the eigenvalues of a real matrix A are not real, the QR~algorithm
converges to a block upper triangular matrix where the diagonal blocks are either 1 x 1 (the real
eigenvalues) or 2 x 2 (each providing a pair of conjugate complex eigenvalues of A).

Exercises for 8.5

Exercise 8.5.1 In each case, find the exact eigen-
values and determine corresponding eigenvectors.

1 409 |
Then start with x¢ = { i } and compute x4 and r3 { 3 }; X4 = { _282 ;13 =3.94

b. Eigenvalues 4, —1; eigenvectors [_? ]’

using the power method.
d. Eigenvalues A; = $(3+V/13), 4, = 1(3—/13);

2 —4 5 2 : Al Al . [142 ]
a)A:[_3 3] b)A:[_3 _2} eigenvectors [ ) }, B ], x4_[ 43],
1 2 31 r3 = 3.3027750 (The true value is A} =

c) A= [ 5 1 ] d) A= [ 1 0 ] 3.3027756, to seven decimal places.)

Exercise 8.5.2 In each case, find the exact eigen-
values and then approximate them using the QR-



algorithm.

b. Eigenvalues 4; = (3 ++/13) = 3302776, A, =

%(3\/@:0.30277&11:[? H,le
3 e 103
Vol 3Tt TV 0 —1
33 -1
1
A2:10|:_1 _3:|7
[
Q=Tiw | —1 33 |
o1 109 =3
2TV | 0 —10
360 1
1
A3:109[ 1 —33]
 [3302775  0.009174
= | 0009174 —0.302775

Exercise 8.5.3 Apply the power method to

0
=10
verge? Explain.

! ], starting at xg = [ !

1 } . Does it con-
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Exercise 8.5.4 If A is symmetric, show that each
matrix Ay in the QR-algorithm is also symmetric.
Deduce that they converge to a diagonal matrix.

Use induction on k. If k=1, A; = A. In general
A1 = Oy 'AkQr = QF A Oy, so the fact that AT = Ay
implies AI{+1 = Apr1. The eigenvalues of A are all
real (Theorem 5.5.5), so the Ay converge to an upper
triangular matrix T. But T must also be symmet-
ric (it is the limit of symmetric matrices), so it is
diagonal.

Exercise 8.5.5 Apply the QR-algorithm to

A= [ ? :; } Explain.

Exercise 8.5.6 Given a matrix A, let Ay, O, and
Ry, k> 1, be the matrices constructed in the QR-
algorithm. Show that A; = (Q] Q- Qk)(Rk .. -R2R1)
for each k£ > 1 and hence that this is a QR-
factorization of Ay.

[Hz'nt: Show that QkRk = Rk—le—l for each
k > 2, and wuse this equality to compute
(0102 Ok)(Ri---RyRy) “from the centre out.” Use
the fact that (AB)"*! = A(BA)"B for any square ma-
trices A and B.]
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