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8.5 Computing Eigenvalues

In practice, the problem of finding eigenvalues of a matrix is virtually never solved by finding the
roots of the characteristic polynomial. This is difficult for large matrices and iterative methods are
much better. Two such methods are described briefly in this section.

The Power Method

In Chapter 3 our initial rationale for diagonalizing matrices was to be able to compute the powers
of a square matrix, and the eigenvalues were needed to do this. In this section, we are interested in
efficiently computing eigenvalues, and it may come as no surprise that the first method we discuss
uses the powers of a matrix.

Recall that an eigenvalue λ of an n× n matrix A is called a dominant eigenvalue if λ has
multiplicity 1, and

|λ |> |µ| for all eigenvalues µ 6= λ

Any corresponding eigenvector is called a dominant eigenvector of A. When such an eigenvalue
exists, one technique for finding it is as follows: Let x0 in Rn be a first approximation to a dominant
eigenvector λ , and compute successive approximations x1, x2, . . . as follows:

x1 = Ax0 x2 = Ax1 x3 = Ax2 · · ·

In general, we define
xk+1 = Axk for each k ≥ 0

If the first estimate x0 is good enough, these vectors xn will approximate the dominant eigenvector
λ (see below). This technique is called the power method (because xk = Akx0 for each k ≥ 1).
Observe that if z is any eigenvector corresponding to λ , then

z·(Az)
‖z‖2 = z·(λz)

‖z‖2 = λ

Because the vectors x1, x2, . . . , xn, . . . approximate dominant eigenvectors, this suggests that we
define the Rayleigh quotients as follows:

rk =
xk·xk+1
‖xk‖2 for k ≥ 1

Then the numbers rk approximate the dominant eigenvalue λ .

Example 8.5.1

Use the power method to approximate a dominant eigenvector and eigenvalue of

A =

[
1 1
2 0

]
.

Solution. The eigenvalues of A are 2 and −1, with eigenvectors
[

1
1

]
and

[
1

−2

]
. Take
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x0 =

[
1
0

]
as the first approximation and compute x1, x2, . . . , successively, from

x1 = Ax0, x2 = Ax1, . . . . The result is

x1 =

[
1
2

]
, x2 =

[
3
2

]
, x3 =

[
5
6

]
, x4 =

[
11
10

]
, x3 =

[
21
22

]
, . . .

These vectors are approaching scalar multiples of the dominant eigenvector
[

1
1

]
.

Moreover, the Rayleigh quotients are

r1 =
7
5 , r2 =

27
13 , r3 =

115
61 , r4 =

451
221 , . . .

and these are approaching the dominant eigenvalue 2.

To see why the power method works, let λ1, λ2, . . . , λm be eigenvalues of A with λ1 dominant and
let y1, y2, . . . , ym be corresponding eigenvectors. What is required is that the first approximation
x0 be a linear combination of these eigenvectors:

x0 = a1y1 +a2y2 + · · ·+amym with a1 6= 0

If k ≥ 1, the fact that xk = Akx0 and Akyi = λ k
i yi for each i gives

xk = a1λ
k
1 y1 +a2λ

k
2 y2 + · · ·+amλ

k
mym for k ≥ 1

Hence
1

λ k
1
xk = a1y1 +a2

(
λ2
λ1

)k
y2 + · · ·+am

(
λm
λ1

)k
ym

The right side approaches a1y1 as k increases because λ1 is dominant
(∣∣∣ λi

λ1

∣∣∣< 1 for each i > 1
)

.
Because a1 6= 0, this means that xk approximates the dominant eigenvector a1λ k

1 y1.
The power method requires that the first approximation x0 be a linear combination of eigenvec-

tors. (In Example 8.5.1 the eigenvectors form a basis of R2.) But even in this case the method fails

if a1 = 0, where a1 is the coefficient of the dominant eigenvector (try x0 =

[
−1

2

]
in Example 8.5.1).

In general, the rate of convergence is quite slow if any of the ratios
∣∣∣ λi

λ1

∣∣∣ is near 1. Also, because the
method requires repeated multiplications by A, it is not recommended unless these multiplications
are easy to carry out (for example, if most of the entries of A are zero).
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QR-Algorithm

A much better method for approximating the eigenvalues of an invertible matrix A depends on the
factorization (using the Gram-Schmidt algorithm) of A in the form

A = QR

where Q is orthogonal and R is invertible and upper triangular (see Theorem 8.4.2). The QR-
algorithm uses this repeatedly to create a sequence of matrices A1 = A, A2, A3, . . . , as follows:

1. Define A1 = A and factor it as A1 = Q1R1.

2. Define A2 = R1Q1 and factor it as A2 = Q2R2.

3. Define A3 = R2Q2 and factor it as A3 = Q3R3.
...

In general, Ak is factored as Ak = QkRk and we define Ak+1 = RkQk. Then Ak+1 is similar to Ak [in
fact, Ak+1 = RkQk = (Q−1

k Ak)Qk], and hence each Ak has the same eigenvalues as A. If the eigenvalues
of A are real and have distinct absolute values, the remarkable thing is that the sequence of matrices
A1, A2, A3, . . . converges to an upper triangular matrix with these eigenvalues on the main diagonal.
[See below for the case of complex eigenvalues.]

Example 8.5.2

If A =

[
1 1
2 0

]
as in Example 8.5.1, use the QR-algorithm to approximate the eigenvalues.

Solution. The matrices A1, A2, and A3 are as follows:

A1 =

[
1 1
2 0

]
= Q1R1 where Q1 =

1√
5

[
1 2
2 −1

]
and R1 =

1√
5

[
5 1
0 2

]
A2 =

1
5

[
7 9
4 −2

]
=

[
1.4 −1.8

−0.8 −0.4

]
= Q2R2

where Q2 =
1√
65

[
7 4
4 −7

]
and R2 =

1√
65

[
13 11
0 10

]
A3 =

1
13

[
27 −5
8 −14

]
=

[
2.08 −0.38
0.62 −1.08

]

This is converging to
[

2 ∗
0 −1

]
and so is approximating the eigenvalues 2 and −1 on the

main diagonal.

It is beyond the scope of this book to pursue a detailed discussion of these methods. The reader is
referred to J. M. Wilkinson, The Algebraic Eigenvalue Problem (Oxford, England: Oxford University
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Press, 1965) or G. W. Stewart, Introduction to Matrix Computations (New York: Academic Press,
1973). We conclude with some remarks on the QR-algorithm.

Shifting. Convergence is accelerated if, at stage k of the algorithm, a number sk is chosen and
Ak − skI is factored in the form QkRk rather than Ak itself. Then

Q−1
k AkQk = Q−1

k (QkRk + skI)Qk = RkQk + skI

so we take Ak+1 = RkQk + skI. If the shifts sk are carefully chosen, convergence can be greatly
improved.

Preliminary Preparation. A matrix such as
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗


is said to be in upper Hessenberg form, and the QR-factorizations of such matrices are greatly
simplified. Given an n×n matrix A, a series of orthogonal matrices H1, H2, . . . , Hm (called House-
holder matrices) can be easily constructed such that

B = HT
m · · ·HT

1 AH1 · · ·Hm

is in upper Hessenberg form. Then the QR-algorithm can be efficiently applied to B and, because
B is similar to A, it produces the eigenvalues of A.

Complex Eigenvalues. If some of the eigenvalues of a real matrix A are not real, the QR-algorithm
converges to a block upper triangular matrix where the diagonal blocks are either 1× 1 (the real
eigenvalues) or 2×2 (each providing a pair of conjugate complex eigenvalues of A).

Exercises for 8.5

Exercise 8.5.1 In each case, find the exact eigen-
values and determine corresponding eigenvectors.

Then start with x0 =

[
1
1

]
and compute x4 and r3

using the power method.

A =

[
2 −4

−3 3

]
a) A =

[
5 2

−3 −2

]
b)

A =

[
1 2
2 1

]
c) A =

[
3 1
1 0

]
d)

b. Eigenvalues 4, −1; eigenvectors
[

2
−1

]
,[

1
−3

]
; x4 =

[
409

−203

]
; r3 = 3.94

d. Eigenvalues λ1 =
1
2(3+

√
13), λ2 =

1
2(3−

√
13);

eigenvectors
[

λ1
1

]
,
[

λ2
1

]
; x4 =

[
142

43

]
;

r3 = 3.3027750 (The true value is λ1 =
3.3027756, to seven decimal places.)

Exercise 8.5.2 In each case, find the exact eigen-
values and then approximate them using the QR-
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algorithm.

A =

[
1 1
1 0

]
a) A =

[
3 1
1 0

]
b)

b. Eigenvalues λ1 =
1
2(3+

√
13) = 3.302776, λ2 =

1
2(3−

√
13) = −0.302776 A1 =

[
3 1
1 0

]
, Q1 =

1√
10

[
3 −1
1 3

]
, R1 =

1√
10

[
10 3
0 −1

]
A2 =

1
10

[
33 −1
−1 −3

]
,

Q2 =
1√

1090

[
33 1
−1 33

]
,

R2 =
1√

1090

[
109 −3

0 −10

]
A3 =

1
109

[
360 1

1 −33

]
=

[
3.302775 0.009174
0.009174 −0.302775

]
Exercise 8.5.3 Apply the power method to

A =

[
0 1

−1 0

]
, starting at x0 =

[
1
1

]
. Does it con-

verge? Explain.

Exercise 8.5.4 If A is symmetric, show that each
matrix Ak in the QR-algorithm is also symmetric.
Deduce that they converge to a diagonal matrix.

Use induction on k. If k = 1, A1 = A. In general
Ak+1 = Q−1

k AkQk = QT
k AkQk, so the fact that AT

k = Ak
implies AT

k+1 = Ak+1. The eigenvalues of A are all
real (Theorem 5.5.5), so the Ak converge to an upper
triangular matrix T . But T must also be symmet-
ric (it is the limit of symmetric matrices), so it is
diagonal.

Exercise 8.5.5 Apply the QR-algorithm to

A =

[
2 −3
1 −2

]
. Explain.

Exercise 8.5.6 Given a matrix A, let Ak, Qk, and
Rk, k ≥ 1, be the matrices constructed in the QR-
algorithm. Show that Ak = (Q1Q2 · · ·Qk)(Rk · · ·R2R1)
for each k ≥ 1 and hence that this is a QR-
factorization of Ak.
[Hint: Show that QkRk = Rk−1Qk−1 for each
k ≥ 2, and use this equality to compute
(Q1Q2 · · ·Qk)(Rk · · ·R2R1) “from the centre out.” Use
the fact that (AB)n+1 = A(BA)nB for any square ma-
trices A and B.]
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